(1)/(6y^2+24y)-(3)/(y^2-y-20)

Simple and best practice solution for (1)/(6y^2+24y)-(3)/(y^2-y-20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(6y^2+24y)-(3)/(y^2-y-20) equation:


D( y )

y^2-y-20 = 0

6*y^2+24*y = 0

y^2-y-20 = 0

y^2-y-20 = 0

y^2-y-20 = 0

DELTA = (-1)^2-(-20*1*4)

DELTA = 81

DELTA > 0

y = (81^(1/2)+1)/(1*2) or y = (1-81^(1/2))/(1*2)

y = 5 or y = -4

6*y^2+24*y = 0

6*y^2+24*y = 0

6*y^2+24*y = 0

DELTA = 24^2-(0*4*6)

DELTA = 576

DELTA > 0

y = (576^(1/2)-24)/(2*6) or y = (-576^(1/2)-24)/(2*6)

y = 0 or y = -4

y in (-oo:-4) U (-4:0) U (0:5) U (5:+oo)

1/(6*y^2+24*y)-(3/(y^2-y-20)) = 0

1/(6*y^2+24*y)-3*(y^2-y-20)^-1 = 0

1/(6*y^2+24*y)-3/(y^2-y-20) = 0

6*y^2+24*y = 0

6*y^2+24*y = 0

6*y*(y+4) = 0

y+4 = 0 // - 4

y = -4

6*y*(y+4) = 0

y^2-y-20 = 0

y^2-y-20 = 0

y^2-y-20 = 0

DELTA = (-1)^2-(-20*1*4)

DELTA = 81

DELTA > 0

y = (81^(1/2)+1)/(1*2) or y = (1-81^(1/2))/(1*2)

y = 5 or y = -4

(y+4)*(y-5) = 0

1/(6*y*(y+4))-3/((y+4)*(y-5)) = 0

1/(6*y*(y+4))+(-3*6*y)/(6*y*(y+4)) = 0

1-3*6*y = 0

1-18*y = 0

(1-18*y)/(6*y*(y+4)) = 0

(1-18*y)/(6*y*(y+4)) = 0 // * 6*y*(y+4)

1-18*y = 0

1-18*y = 0 // - 1

-18*y = -1 // : -18

y = -1/(-18)

y = 1/18

y = 1/18

See similar equations:

| 3x^2-13x-4=8x-4 | | -6(-7-17c)= | | -x-23=-3x+17 | | cos^2x=-1 | | 21*3.14*m^2=a | | 2(3+19r)+18= | | -8(-5x+6)=192 | | 5/15=x/18 | | 3x+6-(x-1)=17 | | X^2+5x-30=5x+6 | | 6x^5-6=0 | | 12+x/-4=-5 | | 77=9/5x+32 | | -5(x-1)=40 | | 11(-15p-13)+14= | | -9(5x-13)=-378 | | -3=3(x+4) | | 4n+6=13*2 | | 6(y+4)/3=16 | | -4(3x+11)=-4 | | -8=7x-13/-8 | | 14x+18-10+7x= | | 14x^2-x-4=0 | | 6+4m-9= | | -252=-10x-92 | | x^3-64i=0 | | X^2+7x+24=12x+4 | | 4=-(5+9x) | | (x^4+3x^3-14x^2-48x-32)/(x^2-16) | | 9-2d+14d-17= | | 17(t-3)+4t=7(3t+5)-11 | | -2(-5x+6)=18 |

Equations solver categories